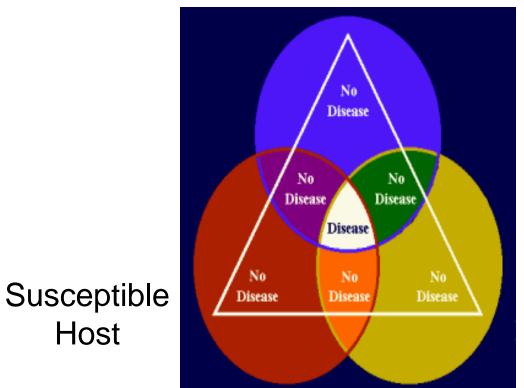
Identification and Organic Control of Greenhouse Diseases

Natalie P. Goldberg Extension Plant Pathologist New Mexico State University


Plant Disorder Vs. Plant Disease

- Plant disorder
 - DAny abnormal growth or development in a plant
- Plant disease
 - DAny abnormal growth or development in a plant specifically caused by an *infectious microorganism* (pathogen).
 - Fungi
 - Bacteria
 - Viruses
 - Nematodes

The Plant Disease Triangle

Virulent Pathogen



Favorable Environment

Greenhouse Environment

- More consistent environment
 - Exception equipment failure (cooler, heater, vents, etc.)
- Environment is generally good for diseases
 - D Moderate (warm) temperature
 - D High humidity / moisture
 - D Air movement (spread)
- Overcrowded conditions
- Rapid lush growth

Disease outbreaks can "explode"

Managing Greenhouse Diseases

- Accurate Diagnosis
- Understanding of pathogen sources
- Understanding of pathogen biology:
 - D lifecycle
 - o environmental requirements
 - ▷ spread.
- Develop appropriate and effective management strategies

Diagnosing Plant Diseases

- Causal agents are *small* (microscopic).
- "Field" diagnosis may not be possible:
 - Positive identification may require laboratory tests and specialized equipment.

Diagnosing Plant Disorders

- Diagnosis is a team effort.
 - Grower
 - SubmittingAgent
 - Diagnostic Lab
- NMSU Plant Diagnostic Clinic:
 - http://plantclinic.nmsu.edu
 - Forms and information for submitting samples.
 - Publications, links, etc.
 - Image gallery (coming attraction!)

NMSU Plant Diagnostic Clinic

- Support lab for the National Plant Diagnostic Network.
 - Partnership between USDA, State Depts. of Ag and Land Grant Universities.
 - Overall objective: Establish a functional <u>national network</u> of existing diagnostic laboratories to rapidly and accurately <u>detect</u> and <u>report</u> pathogens, pests and weeds of national interest, whether intentionally introduced or not.
 - First Detector Training
 - Provides financial support to plant diagnostic clinics.
- Provides diagnostic serves at no charge when samples are submitted through the county extension offices.

The Diagnostic Process

- An accurate diagnosis depends on:
 - Early detection of plant problem routine examination of the plant.
 - Examination of good specimens and/orphotos.
 - Obtaining accurate information.

Diagnosing Plant Problems

Ask questions!

- Identify the plant species affected genus, species, cultivar, common name.
- Observe and document the symptoms.
- Observe and document the plants' growing environment.
- Document the environmental conditions prior to and during symptom development
- * Take good, thorough notes and photos

Diagnosing Plant Problems

- Isolate and identify associated microorganisms.
- Determine if any of the associated microorganisms are likely to be responsible for the symptoms – references, host indexes, experience.
- Make recommendations.

Pathogen Sources

- "Soil"
 - D Soil
 - D Sand
 - D Peat
 - D Potting mixes
- Plant debris

- "Soil" debris
 - D Used pots or flats
 - Onbenches
 - D Underbenches
 - D Inaisles
 - On shoes
 - D Equipment
 - D Hoseends

Pathogen Sources

- Plants kept all year
 DResidents
- Stock "mother" plants
 DVegetative propagation
 - Cuttings
 - Buds
 - Scion wood (grafting)
- New plant introductions

Pathogen Sources

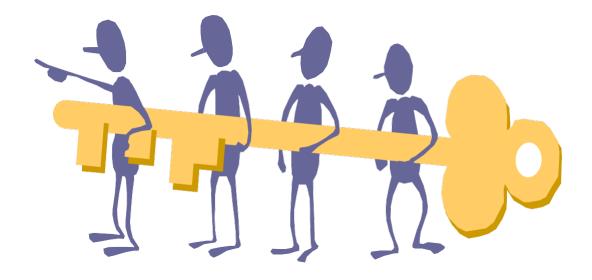
- Water
- Air
- Insects
 - D External carriers
 - Internal carriers
- Weeds

Pathogen Spread

- Water
 - Overhead irrigation
 - D Splash
 - Recycled water
- Plant to Plant contact
- Air currents
- Vectors
 - D Man
 - D Equipment
 - Insects

Disease Management in an Organic System

- Ecologically sound.
- Encourage growth and diversity of soil and plant microorganisms (potential beneficials).
- Plant genetic diversity.
- Integration of disease management decisions with insect and weed management.


Disease Management Strategies

- Genetic Resistance
- Cultural Management
- Biological Management
- Chemical Management
 - Approved for organic production

The Key to Disease Management is <u>Prevention</u>!

Genetic Resistance

- Resistance ability to suppress or retard the activity and progress of a pathogen (absence or reduction of symptoms)
- Tolerance ability to endure severe disease without suffering significant losses in quality or yield (do not inhibit pathogen and symptoms may be present)

Genetic Resistance

- First line of defense.
- Must be continually monitored as pathogens will develop virulence to resistant and tolerant plant material.
- Look for cultivars well adapted to you conditions and with resistance to the most common diseases you face.

Genetic Resistance

Advantages:

- Non-disruptive to the environment
- Compatible with other management strategies (fits well into IPM systems)
- Disadvantages:
 - Not available for all diseases on all crops
 - Pathogens may become virulent to tolerant varieties (over time)
 - Varieties resistant to one pathogen may be highly susceptible to another

- Exclusion
- Planting time
- Water management
- Fertilizer management
- Sanitation
- Insect and weed management
- Manipulation of the environment

- Exclusion Keep pathogen sources out of the greenhouse.
 - Plant material source plants, transplants, seed, etc.
 - Soil-less pasteurized potting media
 - Treat recycled water
 - Keep door closed and vents covered

- Sanitation
 - Removal and destruction of dead plants, diseased plants and plant debris (cull piles should be far away from production areas)
 - New or clean pots, trays, tools, etc.
 - Alcohols
 - Chlorine residual must stray below 4 ppm (safe water drinking act)
 - Hydrogen peroxide
 - Soap-based algicide/demisters
 - New potting mix
 - Keep hose ends off the ground
 - D Wash hands
 - Cleanshoes

- Water Management timing and duration of irrigations should satisfy crop needs without allowing excess water.
 - Reduce saturated soil conditions
 - Reduce leafwetness
- Fertilizer management Grow plants at a moderate pace, reduce lush, succulent growth.
 - Help to reduce activity of pathogens by managing nitrogen.

- Insect and weed management
 - Screening vents and doorways
- Manipulation of the Environment
 - Temperature
 - Humidity
 - Aircirculation
 - Shade

Biological Management

- Management of pathogens by other microorganisms.
- Biological control is constantly occurring in nature.
- Use may include rearing and releasing microorganisms or manipulating existing populations.
 - D Disease-suppressive microorganisms

Disease Suppressive Microorganisms

- Fungi and bacteria can help to suppress diseases:
 - D Trichoderma
 - Streptomyces
 - Bacillus
 - Psuedomonas
- Only a few strains are commercially available
- Bacteriophages viruses of bacteria

Trichoderma

- Soil-borne fungus.
- Season long control of root diseases.
 - D Colonizes the root system.
- Use on vegetables and ornamentals.
- Protects against Pythium, Rhizoctonia, and Fusarium and many others.
- Also used as a plant growth regulator.
- Rootshield® and Plantshield®

Streptomyces

- Soil-borne fungus
- Disease suppressing and disease causing strains (even in the same species).
- Suppresses activity of *Pythium, Fusarium* and *Phomopsis*.
- *Streptomyces griseoviridis* (Mycostop®):
 - Seed rot
 - D Damping-off
 - Root rots
- Greenhouse vegetables and ornamentals
- Applied as a seed treatment, soil drench or through drip systems.

Bacillus

- Many species have strains that have been identified with the ability to suppress many fungi and bacteria
 - D Bacillus subtillis (Serenade®)
 - D Bacillus pumilis (Sonata®)
- Fruit and Vegetable crops, Ornamentals
- Broad spectrum of activity:
 DMildews, molds, blights, leaf spots, rusts

Chemical Management

- Options limited in organic production systems.
 - D Pest, crop, site (greenhouse)
 - Confirm use for organic production
- Timing is critical:
 - Preventative (prior to extensive infection)
- Application methods are critical:
 - Proper equipment
 - Sprayvolume
 - Plantcoverage

Chemical Management

- Copper- and Sulfur-based fungicides
 DAdvantages:
 - Inexpensive
 - Widely available
 - Minimal threat to environment

Disadvantages:

- Phytotoxic at temperatures above 85 F.
- Affect a wide range of fungal and bacterial pathogens; but disease controls varies depending on host and pathogen.
- Overuse may result in development of pathogen resistance

Chemical Management

- Oils and Plant Extracts / Natural Plant Products
 - ▷ Some are compatible with organic production.
 - Reliable disease control has not been demonstrated.
- Bicarbonate-based fungicides
 - D Used preventatively acceptable levels of control against powdery mildews and a few other diseases.
 - Season-long disease control questionable.
- Manure composts
 - Some (not all) have been shown to induce disease resistance in some plants.
 - Variable batch to batch

Pesticide Precautions

- Pesticides are governed by EPA and the New Mexico Department of Agriculture.
 - Products must be registered by both
 - D NM product registration: <u>http://state.ceris.purdue.edu</u>
 - Contact Cary Hamilton: <u>chamilton@nmda.nmsu.edu</u>
- Product label is a legal document:
 - Site of application: host and greenhouse approved
 - D Disease/pathogen
- Product labels and registrations change frequently:

http://www.cdms.net

Greenhouse Diseases

- Fungi
 - D Gray mold
 - Leaf mold
 - D Powdery mildew
 - D Downy mildew
 - D Early blight
 - Root and crown rots
 - Pythium
 - Rhizoctonia
 - Fusarium

- Viruses
 - D Tobacco Mosaic Virus
 - Tomato Spotted Wilt Virus / Impatiens Necrotic Spot Virus
- Bacteria
 - D Bacterial leaf spot

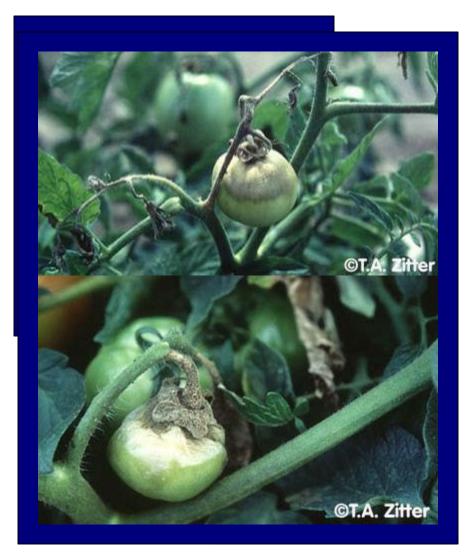
Gray Mold

- Botrytis cinerea (fungus)
- Affects almost every type of greenhouse crop
- Symptoms:
 - D Leafspots
 - Flower spots and blight
 - Stem and crown rot
 - Damping-off

Gray Mold

Sign:
 DGray, dusty spores

Gray Mold


- Weak
 pathogen D
 Stressed tissue D
 Woundedtissue
 Oldtissue
- Flowers!
- Favored by:
 - D High relative humidity (>85%)
 - Cool (65 F) temperature
 - Poor air circulation
 - Overcrowded conditions

Gray Mold on Tomato

- All above ground plant parts:
 - D Leaves
 - D Stems
 - D Flowers and fruit
- Lesions expand eventually blighting (killing) affected tissue.
- Easily spread by air, water, tools, hands, and insects.

Gray Mold Management

- Manipulate greenhouse environment to make it less favorable for disease:
 - D Reduce humidity (<85%) and leaf wetness</p>
 - Increase air circulation
 - Reduce overcrowding and plant-to-plant contact
 - Prune out suckers below first fruit set
 - Periodically remove the bottom leaves (cut 1 inch from the stem and then snap off the stub at the next pruning)
 - Increase temperature (within tolerable range for the crop)
- Good sanitation practices
 - Cleaning tools and hands
 - Removal and destruction of debris
- Organic fungicides: Coppers, biofungicides and hydrogen dioxide.

Leaf Mold on Tomato

- Fulvia (=Cladosporium) fulva (fungus).
- Usually only a problem under highly humid conditions.
- Poor air circulation.
- Cool temperatures.
- Spreads by air, water, tools, hands, and insects.

Leaf Mold on Tomato

- Chlorotic spots on upper surface of older leaves.
- Olive-green spores on under leaf surface.
- Spots merge to affect the entire leaf.
- Usually only the foliage is affected.
- Older leaves are affected first.

Leaf Mold Management

- Use resistant varieties
- Other management same as gray mold:
 DSanitation
 - DManipulate the greenhouse environment
 - DHydrogen dioxide
 - DBiofungicides

Powdery Mildew

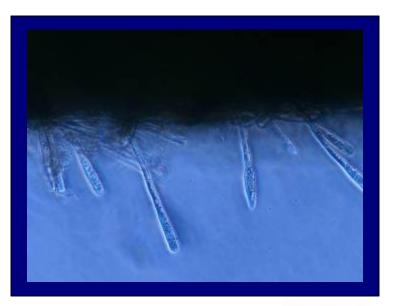
- Common greenhouse disease
 - D Tomatoes, peppers, ornamentals
- Rarely kill plants, reduces aesthetic value and salability
- Symptoms: chlorosis, necrosis, distortion
- Sign: white, powdery growth

Powdery Mildew on Peppers

- Begins are brown blisters on the top of the leaves.
- Fungus sporulates on the underside of the leaf.

Powdery Mildew on Peppers

 Severely affected leaves curl exposing fruit.


Powdery Mildew on Tomato

- Same fungus that infects peppers.
- Begins as irregular, bright yellow blotches.
- Mildew sporulates on leaf and stem surfaces.
- Infected leaves
 eventually die

Powdery Mildew

- Spreads by air currents, water splash, people and equipment.
- Requires high humidity for infection (near 100%).
- Disease develops under a wide range of humidity levels (>30%).
- Low light.
- Overcrowding.

Powdery Mildew Management

- Reduce Humidity
- Increase air circulation
- Preventative sprays
 Sulfur
 Biofungicides
 Bicarbonate fungicides
 Copper fungicides

Downy Mildew

- Cause foliar blight
- Common on: Vegetables and ornamentals (snapdragon, salvia, pansy, rose, geraniums).
- Symptoms:
 Yellowing
 Mottling
 Purplish blotches

Downy Mildew

• Sign: Fluffy gray brown to purple growth on underside of the leaves

Downy Mildew

- Favored by cool, wet conditions with high relative humidity
- Leaf wetness is required for germination and infection
- Spread by splashing water and air

Downy Mildew Conditions and Management

- High Humi dity
- Leaf wetne ss
- Low light
- Overcrowd ing

- Reduce humidity
- Increase air circulation
- Increase light
- Reduce overcrowding

Early Blight

- Caused by two species of *Alternaria*.
- A serious disease on greenhouse tomatoes.
- Soil- and seed-borne.
- All above ground plant parts are affected.
- Disease starts on the lower leaves.

Early Blight

- Small, circular spots often with a dark margin or yellow halo.
- Spots enlarge and develop a target appearance (concentric rings).
- Stem lesions are elongated and enlarge to girdle the stem.

Early Blight

• Fruit may rot at the stem end.

Early Blight Conditions

- Temperatures between 47 and 90 F.
- Leaf wetness
- High humidity
- Overcrowding
- Spread by air currents and water splash

Early Blight Management

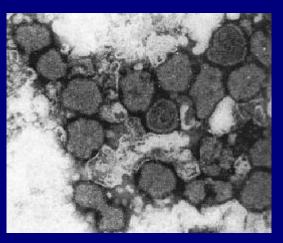
- Resistant cultivars
- Sanitation
- Reduce humidity
- Increase air circulation
- Seed treatment (same as bacterial leaf spot)
- Organically approved chemicals

Tobacco Mosaic Virus (TMV)

- RNA surrounded by a coat protein
- Highly infectious
- Sap transmitted: hands, tools, plant-to-plant contact
- Common disease on many greenhouse plants

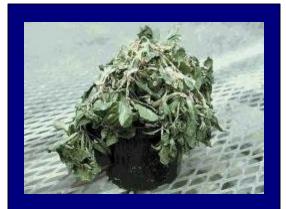
Tobacco Mosaic Virus

- Common disease on many greenhouse plants
- Symptoms include: mosaic, mottling, chlorosis, necrosis, leaf curl, formation of bumps and other deformities, stunting, color breaking, uneven ripening.


Tobacco Mosaic Virus Management

- Sanitation!
 - Destroy infected plants
 - DWash hands
 - DWash clothing
 - DClean tools
- Do not allow smoking in or around plants.

- RNA virus
- Transmitted primarily by thrips
 DCuttings
- Huge host range



- Symptoms:
 - Spots and rings
 - D Necrosis
 - Streaking
 - Stunting
 - Wiltedappearance
 - D Uneven ripening

Bacterial Leaf Spot

- Caused by Xanthomonas campestris pv. vesicatoria.
- Primary hosts:
 Peppers
 Tomatoes
 Conorally on lo
- Generally on leaves
- May occur on stems
 or fruit

Bacterial Leaf Spot on tomato

Bacterial Leaf Spot

- Bacterium is seed-borne!
 D On and in seed.
- Favored by temperatures between 75-86 F and high humidity and leaf wetness.
- Spread by air currents, water splash, and people

Bacterial Leaf Spot Management Prevention

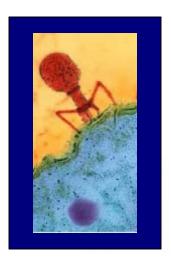
Start with clean seed and transplants!

Bacterial Leaf Spot Management Seed treatments

- Clorox seed treatment (EPA Reg. No. 5813-1):
 - Dose: 2 pts 5.25% sodium hypochlorite / 8 pts. Water
 - D Use 1 gallon of solution per pound of seed
 - D Wash with continuous agitation for 40 mins.
 - Promptly airdry
 - Prepare fresh solution for each batch of seed
- Only kills bacteria on the outside of the seed.

Bacterial Leaf Spot Management Seed treatments

- Hot water treatment
 - □ 122 F for 25 minutes (check temp.constantly)
 - Continuous agitation
 - After treatment, cool seed under tap water
 - Promptly air dry at room temperature (70-75F)
- Kills bacteria on the outside and on the inside of the seed.
- Can reduce germination if temperature is too hot.


Bacterial Leaf Spot Management

- Avoid overhead irrigation
- Reduce humidity (increase air circulation)
- Sanitation
- Organically improved chemicals
 DCopper fungicides
 Hydrogen dioxide
 Biofungicides

Bacterial Leaf Spot Management

- Bacteriophage (AgriPhage):
 - Virus specific to particular strains of Xanthomonas campestris pv. vesicatoria.
 - Identification of strain is required tests conducted by the manufacturer.
 - Adequate control may require frequent applications.

Disease Management Summary

- Integrated pest management
 - Good scouting early detection
- Resistant varieties
- Sanitation:
 - Routine and "year-end" cleanup
 - Remove diseased leaves, fallen leaves and flowers, etc.
 - Removal of diseased and dead plants
 - D Cleantools
 - Clean hands
 - Clean pots, flats, benches, etc.
 - Sterilize" soil heat (dry or steam), solarization

Disease Management Summary

- Isolation of new plants (Quarantine)
- Improve greenhouse environment:
 - Reduce relative humidity increase air flow
 - Reduce overcrowded conditions
 - Alter cultural practices
- Control weeds and insects inside and outside the greenhouse
- Chemical control
 - D Biopesticides
 - "Regular" chemicals

